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Abstract—Measurements made in 26 asymmetric turbulent channel flows (that is, flows in a broad channel,

typically with unequal stresses at the two walls) are presented in the form of mixing lengths and eddy

viscosities. Ranges of applicability of simple empirical formulae are defined and friction laws for the wall
stresses are developed.

NOMENCLATURE

b, channel breadth;

C E constants in gradient law;

C, = 21,/pU2, friction coefficient ;

D, constant;

G, constant in equation for friction
coefficient ;

h, channel half-depth;

K, von Karman's constant ;

L mixing length;

P, mean static pressure;

Re,, = 2hU,/v, Reynolds number based on
average velocity and channel depth;

Re,, = 2hU/v, Reynolds number based on
belt velocity and channel depth;

Re,, = 2hU,/v, Reynolds number based on
maximum velocity and channel depth ;

U, time-averaged velocity component in x-
direction ;

U, average velocity;

U, belt velocity ;

U, maximum velocity ;

Uy, = /(1,/p). friction velocity based on wall
stress:

Uses = (] + |t2])/p], effective friction
velocity ;

v, flow rate;

X, co-ordinate in the direction of main flow ;

A normal distance measured from one wall.

Greek symbols

T, shear stress;

v, = 1,/1,, ratio of the shear stresses at the
walls;

0, fluid density;

v, fluid kinematic viscosity ;

a, local gradient of the kinematic shear
stress;

&, eddy viscosity.

Subscripts
1, denotes high-stress wall;

* Permanent address: Faculty of Engineering, Helwan
University, Elmataria, Cairo, Egypt.
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2, denotes low-stress wall;

m, refers to maximum velocity ;

0, refers to zero turbulent shear stress;
w, denotes wall.

1. INTRODUCTION

IN OTHER papers [1-4] the present authors have
presented measurements made in 26 flows in a channel,
one of whose walls is a moving belt. The channel is
sufficiently broad (aspect ratio typically b/2h 18)
and sufficiently long (development distance typically
x/2h = 30, following a turbulence-inducing mesh) to
generate a reasonable approximation to fully de-
veloped plane turbulent flow. In addition to the cases
of plane Poiseuille and plane Couette flow, which have
been given some attention in the past, 19 intermediate
motions were studied. These can be separated into two
classes:

(a) Poiseuille-type flows, with a maximum mean
velocity within the turbulent flow, and wall-stress ratio
7,/1,<0; and

(b) Couette-type flows, with the mean velocity
varying monotonically across the channel to a maxi-
mum at the moving wall, and wall-stress ratio
T,/1, > 0.

These investigations provide the first comprehen-
sive body of empirical information relating to the often
discussed case of plane channel flow with unequal wall
stresses, although there have been some studies of
flows in channels with differing wall roughness [5],
and a study of developing flow in a channel with a
moving wall was carried out as long ago as 1914 [6].

Situations which give rise to fluid motions of the
general character of those considered here occur
commonly in engineering practice. In particular we
may mention: turbulent lubrication films, smooth-
and rough-walled annuli, plane channels with differing
wall roughness as are sometimes found in heat ex-
changers. and passages between the rotors and fixed
elements of rotating machinery such as pumps, tur-
bines and electric motors. Typically, the heat transfer
associated with these motions is of equal or greater
interest than are the fluid motions themselves. To assist



M. M. M. EL TELBANY and A. J. REYNOLDS

78

Trem ssans-yduy woly panseaw A pue Of

00'1 0001 000’1~ P10 FISO §6S — 0L05 W 0971 — 99 74
001 000'1 0001 orO'T or'l LE9L — 79'69 75T 08'sT - vy 5T
Al £€9'7 $7T0- 90£°0 $590 7899 I8¢ 779 0Pl 50S1 658 9 T
971 £69'T 91810~ 9570 0090 719 T8¢ £1LS L8TY 181 653 99 £z
bl 1901 10— 6970 obLO 4Rl 1048 20'sL 6891 (781 oval 99 T
. — 99600 SE010 SE5°0 10°LS T0LS 6Tk 196 PRTI 871 99 1
- — $£90°0 68010 IE70 1048 1048 6w €56 871 pRTT 99 0z
- — §LLO 1970 £0E0 10LS 1048 £8'67 L9 871 v8T1 99 61
- - 000'1 €9€0 £9€°0 €851 €851 6°L¢ 58 80°LT S0°LT 99 81
— — 0001 8L£0 8LED 9505 950§ 87ST 58 80°L1 80'LT . L
- — 0001 £620 €670 00'8¢ 00'8¢ 0061 09 371 871 pb 91
001 0001 0001 — 6590 6590 H'TL — 0949 NEg! 0091 - 99 St
o1t LYET $8Y°0 0,90 1960 98401 vI8E STL6 06'12 79€T 658 99 bl
0Tl 0951 $08T0— 8IS0 8L60 19'901 10°LS 81°66 0T 1042 PRT 99 €1
i 591 13074 R 29 T2 0880 LLS6 10°LS 8768 10¢ LS1T 871 99 Al
v 09%'] SLO0—~ 09810 6L9°0 1S7L 10°LS S0°L9 orsr €691 371 99 T
sl 66’1 82000~  00E00 950 £8'85 108 LO'SS orz1 STEL 871 99 01
— — £S0000 8000 0S£0 9685 98¢ P67S 6LL 658 658 101 6
- - £77000 62200 $36°0 e 718 0€'LL RETT e Y81 101 3
— — PPO00 00¥0'0 0090 50911 50911 08'86 S5yl SO°LI 80°L1 101 L
- — 98800 $190°0 €10 y1°8¢ I8¢ 6L67 L9 6538 658 99 9
— — 9110 SOET0 €360 1008 10LS 11°6¢ 188 ¥871 ¥87T 99 ¢
- - L1T0 L9910 LS50 10°LS 1026 P19t P18 8Tl ral 99 b
- — 0570 60810 29€0 1028 10LS 085§ 908 #3771 exa 99 ¢
— — #0050 £ET0 8760 1048 10°LS €E7E 87'L $871 871 99 z
— — 0001 2820 7870 10°LS 10°LS 0582 9 P71 871 99 1
Y Yy ) (,_sw) (;_sur) 0001 0001 0007 (,_sw) {;_su) {;_sun) (wrw) -
“q o4 ; *n ey “oy oy "oy "1 “n 9 Yz )

8193 JO s|eId( '] 9[qml




Turbulent channel flows 79

in the application of our work to such situations, we
shall in the present paper recast our results in terms of
the semi-empirical devices commonly used in
engineering calculations : mixing lengths, eddy viscosi-
ties, and wall-friction coefficients.

These formulations are of particular use and interest
when they correlate the data describing a number of
channel flows of the class considered here, and it is
on such widely applicable results that we shall
concentrate.

2. BASIC RESULTS

Table 1 lists the leading features of the flows studied,
and includes the three Reynolds numbers characteriz-
ing each flow. These are based, respectively, on belt
speed U,, maximum time-mean velocity U, (equal to
U, for Couette-type flows), and the average velocity U,
obtained by averaging across the channel section. In
each case one or more of these Reynolds numbers lies
in the range 40,000 to 120,000, and there can be no
doubt that the results exhibit the characteristics of well
established turbulent motion. The Reynolds number
which we shall find most convenient in characterizing
this class of motions is Re,, that based on the average
velocity U, (Note that Uy, vanishes in the important
limiting case of Poiseuille flow, and that for Poiseuille-
type flows U, cannot be deduced prior to an experi-
ment nor in typical applications.)

Also given in Table 1 are the friction velocities u,,
and u,,t corresponding to the usually differing wall
stresses generated in each flow, and the ratio of the two
wall stresses y = 7,/t,. We have adopted the con-
vention that the subscript | labels the wall where the
stress is larger. Thus |y| < 1in every case, while y = 1
for pure shear (Couette) flow, and y = —1 for pure
pressure (Poiseuille) flow.

For Poiseuille-type flows a plane of maximum
velocity and a plane of vanishing shear stress (in
general, not coincident) appear within the channel,
and their positions are indicated in Table 1. Figure 1
illustrates the main kinematic features of this class of
flows and identifies several of the quantities appearing
in the table.

+ For more details see Appendix.

Figure 2 presents the ratio U,/U, of belt speed to
average fluid velocity, as a function of the stress ratio 7.
This empirical curve, which was not known to us until
the experiments had been carried out, is the key to the
design of further experiments of this type, for it
specifies the stress ratio (which defines the particular
flow which an experimenter wishes to examine, but it
not under his immediate control) as a function of two
parameters that are controllable, namely, the flow
through the channel (very nearly V = 2U bh)and the
belt speed U,. Moreover, as we shall see shortly, the
correlation of Fig. 2 provides a convenient link
between the controllable quantities (U, and U,) and
the friction generated at the two walls, which one often
seeks to predict in practical applications.

We have elsewhere [1] indicated the parts of these
flows over which the ubiquitous logarithmic formula
can be used to specify the mean—velocity variation, and
formulae have been developed for the core region
between the two, usually dissimilar wall layers.

3. FRICTION LAWS

If the friction at one wall is known, Fig. 2 allows us to
determine that at the other wall once the flow-
determining parameters (U, and U,) are specified. It
remains to develop a method of predicting one of the
wall stresses, or possibly their sum. While there
undoubtedly exist a number of ways of presenting the
friction measurements implicit in Table 1, the cor-
relation of Fig. 2 is so successful that we have looked
no further.

We consider the friction coefficient based on the
larger stress and the average velocity :

¢ = 1,/(3pU7) = 2u,,y/U,)? (1)

and postulate Reynolds number dependence of the
form

(¢/2)'? = u, /U, = Gi/log,, Re, . (2)

This Reynolds number variation has been found to
provide an adequate correlation of friction data for
pipe flows, boundary layers and Couette flows, al-
though a further empirical constant has sometimes
been introduced, either by raising the logarithm to
some power (as in the Prandtl-Schlichting pipe-
friction formula) or by adding a constant to the

.’—" 7 ’1
~ High - stress wall

Low stress wall

e
——U'J

Mean velocity distribution

|' TZJ

Shear stress distribution

Fic. 1. Main kinematic features of the flow.
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Fii. 2. Ratio of belt velocity to average velocity as a function of stress ratio.

logarithm (as in Squire and Young’s boundary layer
friction formula).

We must expect the parameter G, to be dependent
on flow type, in other words, that it may be a function
of the stress ratio y. This functional dependence, if any,
can be calculated from G; = (u,,/U,) log,, Re, =
(¢;/2)'? log,, Re,. The results presented in Fig. 3
reveal that the variation in G, is little more than 10%,
over the entire range of y, and some part of this
variability may be attributed to experimental scatter.
For y < 0, we cannot do better than adopt the mean
value:

G, = 02175 for Poiseuille-type flows, (3)
while for y > 0 there is a modest dependence on flow
species:

dependence proposed in equation (2); note that while
Re, varies from 19,000 to 38,000 for the four Couette
flows studied, the values of G, are virtually
indistinguishable,

With the stress at one wall linked to the defining
parameters as indicated above, the other stress follows
from 1, = yt,, with y = f(U,/U,) from Fig. 2. The
pressure gradient can be found from

dp/dx=(t; —1,)/2h=1,(1 —7)/2h. (5)

4. MIXING LENGTHS

We shall make use of two definitions of the mixing
length, based respectively on the local shear stress at
some distance from the wall and on the stress at the
closer wall:

G, = 02105 — 0.0157"' 2 for Couette-type flows. (4) s
/o)
The departures of the experimental values from these = %g)/) ar
formulae are at most 2%. In equations (3) and (4) there ¥
is a discrepancy of some 3% in the values y(0+)and and T (6)
7(0—), but this mirrors faithfully the experimental (t/p)'2
results. =
There is no reason to modify the Reynolds number dU/dy
J
T T T . T T T
022~ * -1
X X - Y T
x Eqn. (3)
| . ! =
S; X
o 02 '7/ —
: Eqn. (4) \/ : Poiseuille - type flows
G} x /
020f - . ]
g
~ /
[~ Couette ~type flows ﬁ
0.19 1 | | ] ] ] 1
| 0.5 o -0.5 -1.0
y=12/T

FiG. 3. Variation of G, with stress ratio. Dashed lines represent empirical formulae.
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F1G6. 4. Mixing-length distribution for the high-stress

wall of Couette-type flows (y measured from high-

stress wall): (a) based on wall shear stress; {b) based on local shear stress.

where

L, = l(r,/t)' 2.

In these fully developed channel flows the two stresses
are related by

=1, + pay. (7
where o is the (kinematic) stress gradient.

We are free to select whichever of the definitions (6)
proves to give the more coherent representation of the
data. Whichever is selected, it is expedient to present
the results in the dimensionless form I/y or 1,/y, since
these ratios may be expected to be equal to K, von
Karman’s constant, near a wall.

For Poiseuille-type flows we are also free to select
whichever of the length scales h, y,,, and y, proves to be
the most effective in correlating the data. In fact, the
scale y, is more useful than is y,, since it is determined
by

Yo2 2

R+ 1

®)

Figure 4 shows the variation of /,/y and I/y vs y/h near
the high-stress walls of Couette flows. In every case

l/y =039 for y/h <05 (9a)

provides an adequate description. For low-stress walls
in Couette-type flows (Fig. 5) such a simple pre-
scription is not available. The best single formula is

I/y=0.39—-020y/h for y/h<1 (9b)

but this is quite inadequate for cases where 3 = 1,/1,
< 0.1, and there is considerable scatter about this line
even for flows with y > 0.1.

Turning to Poiseuille-type motions, we see from

Figs. 6 and 7 that
1,/y=039 for y/y,, <0.60 (10a)

for all the flows near high-stress walls, and that
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F16. 5. Mixing-length distribution for the low-stress wall of Couette-type flows (y measured from low-stress
wall): (a) based on wall shear stress; (b) based on local shear stress.
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FiG. 6. Mixing-length distribution for the high-stress wall of Poiseuille-type flows (y and y,, measured from
high-stress wall): (a) based on wall shear stress; (b} based on local shear stress.

L/y =039 for y/y,,<0.80 (10b)

for low-stress walls in flows where || > 0.1.

Summarising, we note that simple mixing-length
formulae are not applicable in the part of the flow
adjacent to a wall at which the stress is less than one-
tenth that at the high-stress wall. For a still wider range
of Couette-type flows the motion adjacent to the low-
stress wall fails to follow a simple pattern. However,
some 70% of the cross-section of most Poiseuille-type
flows can be accurately described by a simple mixing-
length formula. Moreover, since the velocity gradients
are comparatively small both in low-stress regions
and in regions well away from the walls, a fair
representation of the velocity variation can be ob-
tained by assuming logarithmic velocity formulae to
apply across the entire channel. This procedure will
not define details such as planes of maximum velocity,
nor will it usually define the transfer characteristics of
the flow correctly.

05 T T T
x x
oa A% o My W
O3 ~{
}i"‘
Qb= -
{a)
1 i 1
0 05 0

¥/ Yo

5. EDDY VISCOSITIES

Again we consider definitions based on local and
wall stresses:

Tip

= = /o) 2
= qUdy (t/p)
(1
L WP 12
b = Uiy )
where
by = LT/ T,

As our interest here is primarily in the central part of
the Aow—the so-called core region between the wall
layers—we adopt the channel half-width h as the
length scale. Hence we consider variations of &/{uh)
vs y/h. There is still some freedom in the choice of the
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Fic. 7. Mixing-length distribution for the low-stress wall of Poiseuille-type flows (y and y,, measured from
low-stress wall): (a) based on wall shear stress; (b) based on local shear stress.
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for Couette-type flows (y measured from high-stress wall).

scaling friction velocity u, ; this could be based on one
of the wall stresses

Ty = pug, (12a)
or
= P“iz (12b)
or could be the ‘effective’ value given by
uZo =|ti/p| + |ta/pl. (120)

Figure 8 shows distributions of the conventional eddy
viscosity ¢ based on local shear stress, for Couette-type
flows. Since the eddy viscosity is fairly uniform in the
core of pure Poiseuille flow (y = —1)as well as in pure
Couette flow (y=1), as shown here, it is somewhat
surprising to find that for 0 <y < 1 there are very
large (though nearly linear) variations within the
central core. In [ 3] comparisons are made between the
Poiseuille-flow results given here and those obtained
earlier by Laufer [7] and Hussain and Reynolds [8].
Our results were found to be very close to the more
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Fi6.9. Eddy viscosity distribution based on larger wall stress
for Couette-type flows (y measured from high-stress wall).

recent measurements of Hussain and Reynolds.
Figure 9 reveals that the eddy viscosity ¢, based on
the larger wall stress t, presents a simpler pattern, with
a nearly constant core value for any one flow, and that
value nearly the same for all flows for which y > 0.1:

b Tl/p _ Uy
u, h dU/dy  hdU/dy

= 0.215. (13)
The collapse of the several eddy viscosity variations
near the high stress wall i1s consistent with (and
equivalent to) the mixing-length result (9a). Near the
low-stress wall the situation cannot be described so
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FiG. 10. Eddy viscosity distribution based on local shear

stress for Poiseuille-type flows: (a) high-stress wall (y and y,,

measured from high stress wall); (b) low-stress wall (y and
¥o, measured from low-stress wall).

easily, but we note that the region over which ¢, =
constant extends very near to the low-stress wall as
y—0. Thus in this limit the higher stress 7, provides the
appropriate scale for the eddy viscosity across almost
the whole of the channel. It is plausible to suppose that
this behaviour will arise also in an open-channel flow,
where the stress at the free surface is a small fraction of
that at the bottom.

The simple behaviour noted in Fig. 9 is consistent
with the observation (reported in [1]) that the core
velocities vary linearly for the entire class of Couette-
type flows. Thus h/f(u,, dU/dy) = D, a constant, in
the core of any one flow. Here u, is the effective value
of the friction velocity defined in equation (12).
There follows

u 1

- u*l _ *1

W hdUdy  u,.D  D(L+ [y
In fact the constant D ~ 3.5 fory > 0.005, that s, for all

w

Uyt
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the Couette flow cases save 8 and 9. Thus for Couette
flow itself, &,/(u, h) = 1/35/2 = 02, in close
agreement with equation (13).

The concept of an eddy viscosity is less useful when
applied to asymmetric {(t, # —1,) cases of the Poi-
seuille type. Unlike pure Poiseuille flow, these flows
give rise to non-coincident planes of zero stress and
maximum velocity. Hence ¢ — Oas y — y,and ¢, &, —
% as y — y,. Thus any straightforward definition of
eddy viscosity must give rise to large variations in the
core region, pointing to the fundamental unreality of
the gradient-diffusion hypothesis through which the
eddy viscosity is introduced.

Figure 10 presents the eddy viscosity variations for
Poiseuille-type flows in the most coherent manner
which we have discovered and shows that scaling with
the appropriate y, and u, reduces the variations near
the walls (y/y, < 0.5) to a standard pattern, though
this fails to apply at the low-stress wall when |7| < 0.1.
This behaviour mirrors the mixing-layer results (10).

Although we shall not explore the matter in detail, it
is worth noting that there is a marked difference
between the eddy viscosity variation well away from
the high-stress wall in the extreme cases 9 and 10, for
which 7 = 0.00057 and —0.0025, respectively. This
observation suggests that the structure of the core
turbulence is critically dependent on the sign of the
vorticity generated at the low-stress wall, even if this is
very small. In this connection we may note in Fig. 10(a)
the ‘collapse’ of the core eddy viscosity in pure
Poiseuille flow, where equal amounts of vorticity (but
of opposite signs) are generated at the two walls.

One may ask how the transfer characteristics of the
core of a Poiseuille-type flow are to be defined, for the
purpose, say, of calculating the heat transfer from one
wall to the other across a flow of this kind. Bearing in
mind the linear distributions of Fig. 8 (admittedly
arising in Couette-type flows) we propose that a linear
variation of eddy diffusivity be adopted within the core
of a Poiseuille-type flow, starting from 0.1 u,,y, near
the high-stress wall (y/y,; = 0.5) and ending at
0.1 u,,v,, near the low-stress wall (y/y,, = 0.5).In the
wall layers themselves the mixing-length results (10)
can be used to determine the diffusivity.

6. CONCLUDING REMARKS

The following empirical information relating to
possibly asymmetric channel flows has been
presented:

(a)friction laws expressing the pressure gradient and
stresses at the two walls in terms of the volume flow
through the channeland the relative velocity of the two
walls;

(b) definition of the regions near the walls in which a
conventional mixing-length formula is applicable;

(c)methods of estimating the eddy viscosity (or eddy
viscosity distribution) in the core between the two wall
layers;
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FiG. 11. Boundaries between regions where simple empirical
models are applicable. See text for explanation.

(d) the failure of simple correlations near the low-
stress wall in flows where |y| = |7,/t;] < 0.1, that is,
when the stress there is less than 109 of that at the
other wall.

For clarity, the regions referred to in (b)-(d) are
shown in Fig. 11. Shown hatched are regions in which
the ‘standard’ mixing-length description of the wall
layer is applicable (immediately adjacent to the wall
the mixing length will be ‘damped’ by the increasing
influence of viscosity). The extent of the core between
the wall layers is indicated by the unhatched area of
Fig. 11. Finally, near the low-stress wall there is a
region (marked with crosses) where the velocity vari-
ation cannot be defined by one of the usual semi-
empirical formulae. Some features of the flow in this
region have been described elsewhere [1]. It is from

this source that the region of applicability of the
logarithmic velocity variation was derived. Moreover,
it has been shown that the flow in the region marked
with crosses can often be described as a ‘gradient’ or
‘half-power’ layer, where U = C(ay)!'? + E, with o the
gradient of kinematic shear stress introduced in equa-
tion (7). Since the empirical constants C and E vary
from flow to flow, we shall not attempt to define this
layer more precisely here.
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APPENDIX

SHEAR STRESS MEASUREMENTS

The turbulent shear stress was measured with a DISA X-
wire probe (Type 55P61) in conjunction with two DISA 55M
system constant-temperature anemometers, two 55M25
linearizers, a 55D35 r.m.s. voltmeter and a Datron 1045
digital voltmeter.

The probes were calibrated in pure pressure flow through
the test channel itself. The wall-stress values used in reducing
our measurements were obtained by extrapolation of the linear
variations of Reynolds stress obtained using the X-wire probe
This way of determining the wall stress was checked in pure
pressure flow by comparison with the streamwise pressure
gradient and in the wider class of flows by the coalescence of
the several sets of results on the line U fuy = yu/v.

DESCRIPTION EMPIRIQUE DES ECOULEMENTS TURBULENTS EN CANAL

Résume —On présente sous la forme de longueurs de mélange et de viscosités turbulentes des mesures faites

sur 26 écoulements turbulents disymétriques (c’est 4 dire écoulements dans un canal large avec des

contraintes inégales sur les deux parois). Les domaines de validité des formules empiriques simples sont
définis et des lois de frottement pour les contraintes pariétales sont données.



86

DIE EMPIRISCHE BESCHREIBUNG TURBULENTER KANALSTROMUNGEN

Zusammenfassung—Messungen in sechsundzwanzig asymmetrischen turbulenten Kanalstrémungen (d.h.
Strémungen in einem breiten Kanal, insbesondere mit ungleichen Wandschubspannungen an beiden
Wanden) werden in der Form von Mischungsweglidnge und turbulenter Zihigkeit wiedergegeben.
Die Giiltigkeitsbereiche einfacher empirischer Formeln werden definiert und Reibungsgesetze fiir die
Wandschubspannungen entwickelt.

SMIIUPUYECKOE OMHWCAHHE TYPBYJEHTHBIX TEUEHUN B KAHAJIAX

AHHOTARUHA — I/I3mepeﬂuﬂ, NPOBEACHHBIC B ABAaAUATH WWIECTH ACHMMETPHYHbIX Typ6yHCHTHle TEYE-

HHAX B KaHaJ1lax (a HUMCHHO B ITHPOKOM KaHaJIC ¢ HCONWHAKOBBLIMH HATIPAXEHHAMMU Ha obenx CTCHKaX)

NpEACTABJICHBI B BHAOEC Bl:lpa)KEHHﬁ A0S OJIAH CMEIICHHUSA H BHXpCBOFl BA3KOCTH. Onpcz(eneubl obnactu

NPHMEHUMOCTH NPOCTBIX IMITUPHUYECKHX (bOpMyJI H NpEeaTOXKEHbl 3aKOHBl TPEHHS IS Hanpa)!ceunﬁ
Ha CTCHKE.



