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Abstract-Measurements made in 26 asymmetric turbulent channel flows (that is, flows in a broad channel, 
typically with unequal stresses at the two walls) are presented in the form of mixing lengths and eddy 
viscosities. Ranges of applicability of simple empirical formulae are defined and friction laws for the wall 

stresses are developed 
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NOMENCLATURE 

channel breadth ; 
constants in gradient law; 

= 27,/pU:, friction coefficient; 
constant; 
constant in equation for friction 
coefficient ; 
channel half-depth ; 
von KdrmBn’s constant ; 
mixing length ; 
mean static pressure ; 
= 2hU,/v, Reynolds number based on 
average velocity and channel depth ; 

= 2hU,/v, Reynolds number based on 
belt velocity and channel depth ; 
= 231U,/v, Reynolds number based on 
maximum velocity and channel depth; 
time-averaged velocity component in x- 
direction ; 
average velocity ; 
belt velocity ; 
maximum velocity ; 
= 4(7,/p), friction velocity based on wall 
stress: 

ye~iTi~l I + I52 I J/P], effective friction 

flow rate; 
co-ordinate in the direction of main flow ; 
normal distance measured from one wall. 

Greek symbols 

z, shear stress ; 
-j’. = T*/T I, ratio of the shear stresses at the 

walls ; 

P9 fluid density ; 
1’3 fluid kinematic viscosity ; 
‘A, local gradient of the kinematic shear 

stress ; 
i:, eddy viscosity. 

Subscripts 

1, denotes high-stress wall ; 

* Permanent address: Faculty of Engineering, Helwan 
University, Elmataria, Cairo, Egypt. 

denotes low-stress wall ; 
refers to maximum velocity ; 
refers to zero turbulent shear stress; 

w, denotes wall. 

1. INTRODUCTION 

IN OTHER papers Cl-41 the present authors have 
presented measurements made in 26 flows in a channel. 
one of whose walls is a moving belt. The channel is 
sufficiently broad (aspect ratio typically b/2h = 18) 

and sufficiently long (development distance typically 
x/2h = 30, following a turbulence-inducing mesh) to 
generate a reasonable approximation to fully de- 
veloped plane turbulent Row. In addition to the cases 
of plane Poiseuille and plane Couette flow, which have 
been given some attention in the past, I9 intermediate 
motions were studied. These can be separated into two 
classes : 

(a) Poiseuille-type flows, with a maximum mean 
velocity within the turbulent flow, and wall-stress ratio 
r,/z,<O; and 

(b) Couette-type flows, with the mean velocity 
varying monotonically across the channel to a maxi- 

mum at the moving wall, and wall-stress ratio 
rz/sl > 0. 

These investigations provide the first comprehen- 
sive body of empirical information relating to the often 

discussed case of plane channel flow with unequal wall 
stresses, although there have been some studies of 
flows in channels with differing wall roughness [5], 
and a study of developing flow in a channel with a 
moving wall was carried out as long ago as 1914 [6]. 

Situations which give rise to fluid motions of the 
general character of those considered here occur 

commonly in engineering practice. In particular wc 
may mention : turbulent lubrication films, smooth- 

and rough-walled annuli, plane channels with differing 
wall roughness as are sometimes found in heat ex- 

changers, and passages between the rotors and fixed 
elements of rotating machinery such as pumps. tur- 
bines and electric motors. Typically, the heat transfer 
associated with these motions is of equal or greater 

interest than are the fluid motions themselves. To assist 
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Turbulent channel flows 79 

in the application of our work to such situations, we 

shall in the present paper recast our results in terms of 
the semi-empirical devices commonly used in 
engineering calculations : mixing lengths, eddy viscosi- 

ties, and wall-friction coefficients. 
These formulations are of particular use and interest 

when they correlate the data describing a number of 
channel flows of the class considered here, and it is 
on such widely applicable results that we shall 
concentrate. 

2. BASIC RESULTS 

Table 1 lists the leading features of the flows studied, 
and includes the three Reynolds numbers characteriz- 
ing each flow. These are based, respectively, on belt 
speed U,, maximum time-mean velocity U, (equal to 
U, for Couette-type flows), and the average velocity U, 
obtained by averaging across the channel section. In 
each case one or more of these Reynolds numbers lies 
in the range 40,000 to 120,000, and there can be no 
doubt that the results exhibit the characteristics of well 
established turbulent motion. The Reynolds number 
which we shall find most convenient in characterizing 
this class of motions is Re,, that based on the average 
velocity U,. (Note that U, vanishes in the important 
limiting case of Poiseuille flow, and that for Poiseuille- 
type flows U, cannot be deduced prior to an experi- 

ment nor in typical applications.) 
Also given in Table 1 are the friction velocities u*i 

and it corresponding to the usually differing wall 
stresses generated in each flow, and the ratio of the two 

wall stresses 7 = rJr,. We have adopted the con- 
vention that the subscript 1 labels the wall where the 
stress is larger. Thus lyl < 1 in every case, while y = 1 

for pure shear (Couette) flow, and 7 = - 1 for pure 
pressure (Poiseuille) flow. 

For Poiseuille-type flows a plane of maximum 

velocity and a plane of vanishing shear stress (in 
general, not coincident) appear within the channel, 
and their positions are indicated in Table 1. Figure 1 
illustrates the main kinematic features of this class of 
flows and identifies several of the quantities appearing 
in the table. 

t For more details see Appendix. 

Figure 2 presents the ratio U,/U, of belt speed to 

average fluid velocity, as a function of the stress ratio 7. 
This empirical curve, which was not known to us until 

the experiments had been carried out, is the key to the 
design of further experiments of this type, for it 
specifies the stress ratio (which defines the particular 
flow which an experimenter wishes to examine, but it 
not under his immediate control) as a function of two 
parameters that are controllable, namely, the flow 
through the channel (very nearly 6’ = 2U,bh) and the 
belt speed U,. Moreover, as we shall see shortly, the 
correlation of Fig. 2 provides a convenient link 
between the controllable quantities (U, and U,) and 
the friction generated at the two walls, which one often 
seeks to predict in practical applications. 

We have elsewhere [l] indicated the parts of these 
flows over which the ubiquitous logarithmic formula 
can be used to specify the mean-velocity variation, and 
formulae have been developed for the core region 
between the two, usually dissimilar wall layers. 

3. FRICTION LAWS 

If the friction at one wall is known, Fig. 2 allows us to 

determine that at the other wall once the flow- 
determining parameters (U, and U,) are specified. It 
remains to develop a method of predicting one of the 
wall stresses, or possibly their sum. While there 

undoubtedly exist a number of ways of presenting the 
friction measurements implicit in Table 1, the cor- 
relation of Fig. 2 is so successful that we have looked 
no further. 

We consider the friction coefficient based on the 
larger stress and the average velocity : 

Cf = ~llW,Z) = w4*,l~,)2 (1) 

and postulate Reynolds number dependence of the 
form 

(cr/2)’ ’ = u*i/U, = G,/log,, Re, (2) 

This Reynolds number variation has been found to 

provide an adequate correlation of friction data for 

pipe flows, boundary layers and Couette flows, al- 
though a further empirical constant has sometimes 

been introduced, either by raising the logarithm to 
some power (as in the Prandtl-Schlichting pipe- 
friction formula) or by adding a constant to the 

T 
2h 

L 

Mean veloaty dlstrl butlon Shear stress distribution 

Fio. 1. Main kinematic features of the flow 

High - stress WI I 

stress WI I 
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Couette - type flows 

FK;. 2. Ratio of ‘belt velocity to average velocity as a function of stress ratio, 

logarithm (as in Squire and Young’s boundary layer dependence proposed in equation (2); note that while 
friction formula). Re, varies from 19,000 to 38,000 for the four Couette 

We must expect the parameter G, to be dependent flows studied, the values of G, are virtually 

on flow type, in other words, that it may be a function indistinguishable. 

of the stress ratio y. This functional dependence, if any, With the stress at one wall linked to the defining 

can be calculated from G, = (u,,/u,) log,, Re, = parameters as indicated above, the other stress follows 

(c,/2)’ 2 log,,, Re,. The results presented in Fig. 3 from 72 = ;sr,, with 7 = f(U,/U,) from Fig. 2. The 

reveal that the variation in G, is little more than 10% pressure gradient can be found from 

over the entire range of y, and some part of this 
variability may be attributed to experimental scatter. 

dp/dx=(~,-7,)/2h=r,(l -y)/2h. (5) 

For y < 0, we cannot do better than adopt the mean 
value : 4. MIXING LEi%GTHS 

G, = 0.2175 for Poiseuille-type flows, (3) We shall make use of two definitions of the mixing 

while for y > 0 there is a modest dependence on flow length, based respectively on the local shear stress at 

species : some distance from the wall and on the stress at the 

G, = 0.2105 - 0.015~’ ’ for Couette-type flows, 
closer wall : 

(4) 

The departures of the experimental values from these 
, = (zlPP2 

formulae are at most 2%. In equations (3) and (4) there 
d U/d! 

is a discrepancy of some 3% in the values y(O+) and and 
y(O-), but this mirrors faithfully the experimental 
results. , = kvlP)12 

w 
There is no reason to modify the Reynolds number dU/dJ 

x 

Eqn (41 

Couette - type flows 
1 

(6) 

0 19 I I I I I I I 
/ 05 0 -05 -1 0 

y= TJ/T, 

FK;. 3. Variation of G, with stress ratio. Dashed lines represent empirical formulae. 
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Case 

(a) 
1 I I 

0 0.50 IO 

y'h y/h 

FIG. 4. Mixing-length distribution for the high-stress wall of Couette-type flows (y measured from high- 
stress wall): (a) based on wall shear stress; (b) based on local shear stress. 

where 

1, = 4T,/7)’ 2. 

YOl 2 Yoz 2 
-= 

h 
__ or -= 
l+li’l h 1 + Ulrl 

(8) 

In these fully developed channel flows the two stresses Figure 4 shows the variation of 1,/y and l/y vs y/h near 

are related by the high-stress walls of Couette flows. In every case 

T=t,+/lUy. (7) 

where a is the (kinematic) stress gradient. 
We are free to select whichever of the definitions (6) 

proves to give the more coherent representation of the 
data. Whichever is selected, it is expedient to present 
the results in the dimensionless form l/y or 1,/y, since 
these ratios may be expected to be equal to K, von 
Karmdn’s constant, near a wall. 

For Poiseuille-type flows we are also free to select 
whichever of the length scales h, y, and y, proves to be 
the most effective in correlating the data. In fact, the 
scale y. is more useful than is y,, since it is determined 

by 

1,/y = 0.39 for y/h < 0.5 (9a) 

provides an adequate description. For low-stress walls 
in Couette-type flows (Fig. 5) such a simple pre- 
scription is not available. The best single formula is 

l/y = 0.39 - 0.20 y/h for y/h < 1 (9b) 

but this is quite inadequate for cases where 7 = rJr, 
< 0.1, and there is considerable scatter about this line 
even for flows with ;’ > 0.1. 

Turning to Poiseuille-type motions, we see from 

Figs. 6 and 7 that 

1,/y = 0.39 for y/y, 1 < 0.60 (lOa) 

for all the flows near high-stress walls, and that 

Case 

05r---l 

y/h y/h 

FIG. 5. Mixing-length distribution for the low-stress wall of Couette-type flows (y measured from low-stress 
wall): (a) based on wall shear stress; (b) based on local shear stress. 

HMT 25: 1 - F 
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Oi- 01 

(a) 

I I I 
0 05 1.0 0 05 IO 

Y’% Y’YO, 

FIG. 6. nixing-length djstribution for the high-stress wall of Poiseuille-type flows (r and _vo, measured from 

high-stress wall): (a) based on wall shear stress; (b) based on local shear stress. 

I,/p=O.39 for yjyoz go.80 (lob) 

for low-stress walls in flows where /;‘I > 0.1. 
Summarising, we note that simple mixing-length 

formulae are not applicable in the part of the flow 
adjacent to a wall at which the stress is less than one- 
tenth that at the high-stress wall. For a still wider range 
of Couette-type Rows the motion adjacent to the low- 
stress wall fails to follow a simple pattern. However, 
some 7076 of the cross-section of most Poiseuille-type 
flows can be accurately described by a simple mixing- 
length formula. Moreover, since the velocity gradients 
are comparatively small both in low-stress regions 
and in regions well away from the walls, a fair 
representation of the velocity variation can be ob- 
tained by assuming logarithmic velocity formulae to 
apply across the entire channel. This procedure will 
not define details such as planes of maximum velocity, 
nor will it usually define the transfer characteristics of 
the flow correctly. 

5. EDDY VISCOSITIES 

Again we consider definitions based on local and 
wall stresses : 

where 

L = iX,,‘S. 

As our interest here is primarily in the central part of 
the flow-the so-called core region between the wali 
layers--we adopt the channel half-width h as the 
length scale. Hence we consider variations of ~:/(u,h) 
vs y/h. There is still some freedom in the choice of the 

Case 

01 - 

(bl 
I 6 I 

0 05 IO 

FL 7. 

Y’YOZ Y/Y02 

Mixing-length distribution for the low-stress wall of Poiseuille-type flows (y and pOz measured from 
low-stress wall): (a) based on wall shear stress; (b) based on local shear stress. 
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0 04 0.8 12 16 20 

y/h 

Case 
OM I I I 

7: 

am 
90 

FIG. 8. Eddy viscosity distribution based on local shear stress 
for Couette-type flows (y measured from high-stress wall). 

scaling friction velocity u* ; this could be based on one 
of the wall stresses 

or 

Zl = w21 U2a) 

T2 =w:2 U2b) 

or could be the ‘effective’ value given by 

Ufe = ITAl + 152/P/. (12c) 

Figure 8 shows distributions of the conventional eddy 
viscosity E based on local shear stress, for Couette-type 
flows. Since the eddy viscosity is fairly uniform in the 
core of pure Poiseuille flow (i’ = - 1) as well as in pure 
Couette flow (y = l), as shown here, it is somewhat 
surprising to find that for 0 < y < 1 there are very 
large (though nearly linear) variations within the 
central core. In [3] comparisons are made between the 
Poiseuille-flow results given here and those obtained 
earlier by Laufer [7] and Hussain and Reynolds [8]. 
Our results were found to be very close to the more 

Case 

t I I I I I A’, 

Cl 1-l 

1 I I I I 

0 04 08 12 16 20 

y/h 

I I I I 

000000000 
08 

07 
0 

8 

1 
Case 

“,: 
Em 
90 

0 
d 

04 08 12 16 20 

y/h 

FIG. 9. Eddy viscosity distribution based on larger wall stress 
for Couette-type flows (y measured from high-stress wall). 

recent measurements of Hussain and Reynolds. 
Figure 9 reveals that the eddy viscosity fw based on 

the larger wall stress r1 presents a simpler pattern, with 
a nearly constant core value for any one flow, and that 
value nearly the same for all flows for which y > 0.1: 

C 71/P u*i _=-= 

u*i h d uldy 
~ = 0.215. 
h diJ/dy 

(13) 

The collapse of the several eddy viscosity variations 
near the high stress wall is consistent with (and 
equivalent to) the mixing-length result (9a). Near the 
low-stress wall the situation cannot be described so 
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j- 

i- 

(b) 

. . 

I I I 

0 05 IO 

Y/Y,, 

I 1 1 

I I 1 

x 

-I 
10 

FIG. 10. Eddy viscosity distribution based on local shear 
stress for Poiseuille-type flows: (a) high-stress wall (y and y,, 
measured from high stress wall); (b) low-stress wall (y and 

yo2 measured from low-stress wall). 

easily, but we note that the region over which r, = 

constant extends very near to the low-stress wall as 
y+O. Thus in this limit the higher stress zr provides the 
appropriate scale for the eddy viscosity across almost 
the whole of the channel. It is plausible to suppose that 
this behaviour will arise also in an open-channel flow, 

where the stress at the free surface is a small fraction of 
that at the bottom. 

The simple behaviour noted in Fig. 9 is consistent 
with the observation (reported in [l]) that the core 
velocities vary linearly for the entire class of Couette- 
type flows. Thus h/(u,, dU/dy) = D, a constant, in 
the core of any one flow. Here u*, is the effective value 
of the friction velocity defined in equation (12). 
There follows 

LV _ %l _ u*r 1 

u*1’1 h dU/dy u*, D D(l + Iy])r”’ 

In fact the constant D _r 3.5 for 1’ > 0.005, that is, for all 

the Couette flow cases save 8 and 9. Thus for Couette 
flow itself, r,/(u,,h) = 1/3.5J2 = 0.2. in close 
agreement with equation (13). 

The concept of an eddy viscosity is less useful when 
applied to asymmetric (T, # -r2) cases of the Poi- 
seuille type. Unlike pure Poiseuille flow, these flows 
give rise to non-coincident planes of zero stress and 
maximum velocity. Hence c -+ 0 as y -+ y0 and 8, r, + 

x as y + y,,,. Thus any straightforward definition of 
eddy viscosity must give rise to large variations in the 
core region, pointing to the fundamental unreality of 
the gradient-diffusion hypothesis through which the 
eddy viscosity is introduced. 

Figure 10 presents the eddy viscosity variations for 
Poiseuille-type flows in the most coherent manner 
which we have discovered and shows that scaling with 
the appropriate y0 and u* reduces the variations near 
the walls (yjyO < 0.5) to a standard pattern, though 
this fails to apply at the low-stress wall when 1~1 < 0.1. 
This behaviour mirrors the mixing-layer results (10). 

Although we shall not explore the matter in detail, it 
is worth noting that there is a marked difference 
between the eddy viscosity variation well away from 
the high-stress wall in the extreme cases 9 and 10, for 

which 7 = 0.00057 and -0.0025, respectively. This 
observation suggests that the structure of the core 

turbulence is critically dependent on the sign of the 
vorticity generated at the low-stress wall, even if this is 
very small. In this connection we may note in Fig. 10(a) 
the ‘collapse’ of the core eddy viscosity in pure 
Poiseuille flow, where equal amounts of vorticity (but 
of opposite signs) are generated at the two walls. 

One may ask how the transfer characteristics of the 
core of a Poiseuille-type flow are to be defined, for the 

purpose, say, of calculating the heat transfer from one 
wall to the other across a flow of this kind. Bearing in 
mind the linear distributions of Fig. 8 (admittedly 

arising in Couette-type flows) we propose that a linear 
variation of eddy diffusivity be adopted within the core 
of a Poiseuille-type flow, starting from 0.1 u*,yol near 

the high-stress wall (y/yol = 0.5) and ending at 
0.1 t+yo2 near the low-stress wall (y:yo2 = 0.5). In the 
wall layers themselves the mixing-length results (10) 
can be used to determine the diffusivity. 

6. CONCLUDING REMARKS 

The following empirical information relating to 

possibly asymmetric channel flows has been 

presented : 
(a)friction laws expressing the pressure gradient and 

stresses at the two walls in terms of the volume flow 
through the channel and the relative velocity of the two 

walls ; 
(b) definition of the regions near the walls in which a 

conventional mixing-length formula is applicable ; 

(c) methods of estimating the eddy viscosity (or eddy 
viscosity distribution) in the core between the two wall 

layers ; 
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FIG. 11. Boundaries between regions where simple empirical 
models are applicable. See text for explanation. 

(d) the failure of simple correlations near the low- 

stress wall in flows where 1~1 = Itz/rl 1 c: 0.1, that is, 
when the stress there is less than 10% of that at the 
other wall. 

For clarity, the regions referred to in (b)-(d) are 
shown in Fig. 11. Shown hatched are regions in which 
the ‘standard’ mixing-length description of the wall 
layer is applicable (immediately adjacent to the wall 
the mixing length will be ‘damped by the increasing 
influence of viscosity). The extent of the core between 
the wall layers is indicated by the unhatched area of 
Fig. 11. Finally, near the low-stress wall there is a 
region (marked with crosses) where the velocity vari- 

ation cannot be defined by one of the usual semi- 

empirical formulae. Some features of the flow in this 
region have been described elsewhere [l]. It is from 

this source that the region of applicability of the 
logarithmic velocity variation was derived. Moreover, 

it has been shown that the flow in the region marked 
with crosses can often be described as a ‘gradient’ or 
‘half-power’ layer, where U = C(q)’ ’ + E, with c( the 
gradient of kinematic shear stress introduced in equa- 

tion (7). Since the empirical constants C and E vary 
from flow to flow, we shall not attempt to define this 
layer more precisely here. 

1. 

2. 

3. 

4. 

5. 

6. 

I. 
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APPENDIX 

SHEAR STRESS MEASUREMENTS 

The turbulent shear stress was measured with a DISA X- 
wire probe (Type 55P61) in conjunction with two DISA 55M 
system constant-temperature anemometers, two 55M25 
linear&m, a 55D35 r.m.s. voltmeter and a Datron 1045 
digital voltmeter. 

The probes were calibrated in pure pressure flow through 
the test channel itself. The wall-stress values used in reducing 
our measurements were obtained by extrapolation of the linear 
variations of Reynolds stress obtained using the X-wire probe 
This way of determining the wall stress was checked in pure 
pressure flow by comparison with the streamwise pressure 
gradient and in the wider class of flows by the coalescence of 

the several sets of results on the line U/u, = ~u,/v. 

DESCRIPTION EMPIRIQUE DES ECOULEMENTS TURBULENTS EN CANAL 

Resurne~n presente sous la forme de longueurs de melange et de viscositis turbulentes des mesures faites 
sur 26 ecoulements turbulents disymetriques (c’est a dire ecoulements dans un canal large avec des 
contraintes inegales sur les deux parois). Les domaines de validite des formules empiriques simples sont 

definis et des lois de frottement pour les contraintes parietales sont donnees. 
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DIE EMPIRISCHE BESCHREIBUNG TURBULENTER KANALSTRGMUNGEN 

Zusammenfassung-Messungen in sechsundzwanzig asymmetrischen turbulenten Kanalstromungen (d.h. 
Stromungen in einem breiten Kanal, insbesondere mit ungleichen Wandschubspannungen an beiden 
Wanden) werden in der Form von Mischungsweglange und turbulenter Zlhigkeit wiedergegeben. 

Die Gtiltigkeitsbereiche einfacher empirischer Formeln werden definiert und Reibungsgesetze fur die 
Wandschubspannungen entwickelt. 

3MfIMPMYECKOE OIIMCAHME TYP6YJIEHTHbIX TEqEHMH B KAHAJIAX 

AtmoTaqnn- M3MePeHllR, npOBeLleHHblC B LiBWlUaTll UIeCTEi ZlCIfMMCTpH'lHblX Typ6yJlCHTHblX Te'le- 

HNIIX B KaHaJlaX(a HMCHHO B UIHpOKOM KaHaJIC C HeODHHaKOBblMH HaIlpSKCHWlMH Ha o6eax CTCHKBX) 

nIJWCTaBn'ZHb1 B BBne BbIpaECHAfi DJIR I*TIHH CMeUlCHAR A BIiXpc23Oti BIIJKOCTII. On~AiWZHbI o6nacru 
nptfMCHAMOCTH IIpOCTbIX 3MnHpWECKHX @OpMyn N n~L"IOxCHbl JaKOHbI TPeHkiSl LU,Lnn Hanp%KKeHl,8 

Ha CTCHKC. 


